Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Stem Cell Res Ther ; 14(1): 325, 2023 11 13.
Article En | MEDLINE | ID: mdl-37953266

BACKGROUND: Stromal vascular fraction (SVF) treatment promoted the regeneration of the intestinal epithelium, limiting lethality in a mouse model of radiation-induced gastrointestinal syndrome (GIS). The SVF has a heterogeneous cell composition; the effects between SVF and the host intestinal immunity are still unknown. The specific role of the different cells contained in the SVF needs to be clarified. Monocytes-macrophages have a crucial role in repair and monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2. METHODS: Mice exposed to abdominal radiation (18 Gy) received a single intravenous injection of SVF (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Intestinal immunity and regeneration were evaluated by flow cytometry, RT-PCR and histological analyses. RESULTS: Using flow cytometry, we showed that SVF treatment modulated intestinal monocyte differentiation at 7 days post-irradiation by very early increasing the CD11b+Ly6C+CCR2+ population in the intestine ileal mucosa and accelerating the phenotype modification to acquire CX3CR1 in order to finally restore the F4/80+CX3CR1+ macrophage population. In CX3CR1-depleted mice, SVF treatment fails to mature the Ly6C-MCHII+CX3CR1+ population, leading to a macrophage population deficit associated with proinflammatory environment maintenance and defective intestinal repair; this impaired SVF efficiency on survival. Consistent with a CD11b+ being involved in SVF-induced intestinal repair, we showed that SVF-depleted CD11b+ treatment impaired F4/80+CX3CR1+macrophage pool restoration and caused loss of anti-inflammatory properties, abrogating stem cell compartment repair and survival. CONCLUSIONS: These data showed that SVF treatment mitigates the GIS-involving immunomodulatory effect. Cooperation between the monocyte in SVF and the host monocyte defining the therapeutic properties of the SVF is necessary to guarantee the effective action of the SVF on the GIS.


Monocytes , Radiation Injuries, Experimental , Stromal Vascular Fraction , Animals , Mice , Adipose Tissue , Intestines , Macrophages , Stromal Cells , Radiation Injuries, Experimental/therapy
2.
STAR Protoc ; 4(3): 102388, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37379221

In vitro modeling of the different steps of immune cell recruitment is essential to decipher the role of endothelial cells in this process. Here, we present a protocol for the assessment of human monocyte transendothelial migration using a live cell imaging system. We describe steps for culture of fluorescent monocytic THP-1 cells and chemotaxis plate preparation with HUVEC monolayers. We then detail real-time analysis using the IncuCyte® S3 live-cell imaging system, image analysis, and assessment of transendothelial migration rates. For complete details on the use and execution of this protocol, please refer to Ladaigue et al.1.


Monocytes , Transendothelial and Transepithelial Migration , Humans , Cell Movement , Endothelial Cells , Chemotaxis
3.
Stem Cell Res Ther ; 14(1): 5, 2023 01 11.
Article En | MEDLINE | ID: mdl-36627674

BACKGROUND: Cellular therapy seems to be an innovative therapeutic alternative for which mesenchymal stem cells (MSCs) have been shown to be effective for interstitial and hemorrhagic cystitis. However, the action of MSCs on chronic radiation cystitis (CRC) remains to be demonstrated. The aim of this study was to set up a rat model of CRC and to evaluate the efficacy of MSCs and their mode of action. METHODS: CRC was induced by single-dose localized irradiation of the whole bladder using two beams guided by tomography in female Sprague-Dawley rat. A dose range of 20-80 Gy with follow-up 3-12 months after irradiation was used to characterize the dose effect and the kinetics of radiation cystitis in rats. For the treatment, the dose of 40 Gy was retained, and in order to potentiate the effect of the MSCs, MSCs were isolated from adipose tissue. After expansion, they were injected intravenously during the pre-chronic phase. Three injections of 5 million MSCs were administered every fortnight. Follow-up was performed for 12 months after irradiation. RESULTS: We observed that the intensity and frequency of hematuria are proportional to the irradiation dose, with a threshold at 40 Gy and the appearance of bleeding from 100 days post-irradiation. The MSCs reduced vascular damage as well as damage to the bladder epithelium. CONCLUSIONS: These results are in favor of MSCs acting to limit progression of the chronic phase of radiation cystitis. MSC treatment may afford real hope for all patients suffering from chronic radiation cystitis resistant to conventional treatments.


Cystitis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Radiation Injuries , Rats , Female , Animals , Rats, Sprague-Dawley , Urothelium , Cystitis/therapy , Urinary Bladder , Radiation Injuries/therapy , Mesenchymal Stem Cell Transplantation/methods
4.
iScience ; 25(12): 105482, 2022 Dec 22.
Article En | MEDLINE | ID: mdl-36404925

Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions. Here, we show that the expression of the endothelial α-mannosidase MAN1C1 protein decreases after irradiation. We modeled two crucial steps in monocyte recruitment by developing in vitro real-time imaging models. Inhibition of MAN1C1 expression by siRNA gene silencing increases the abundance of high-mannose N-glycans, improves the adhesion of monocytes on endothelial cells in flow conditions and, in contrast, decreases radiation-induced transendothelial migration of monocytes. Consistently, overexpression of MAN1C1 in endothelial cells using lentiviral vectors decreases the abundance of high-mannose N-glycans and monocyte adhesion and enhances transendothelial migration of monocytes. Hence, we propose a role for endothelial MAN1C1 in the recruitment of monocytes, particularly in the adhesion step to the endothelium.

5.
Front Oncol ; 12: 958155, 2022.
Article En | MEDLINE | ID: mdl-36387192

Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.

6.
Biology (Basel) ; 11(7)2022 Jun 28.
Article En | MEDLINE | ID: mdl-36101353

Cystitis is a bladder disease with a high rate of prevalence in the world population. This report focuses on Interstitial Cystitis (IC), Hemorrhagic Cystitis (HC) and Chronic Radiation Cystitis. These pathologies have different etiologies, but they share common symptoms, for instance, pain, bleeding, and a contracted bladder. Overall, treatments are quite similar for abacterial cystitis, and include bladder epithelium protective or anti-inflammatory agents, alleviating pain and reducing bleeding. This review summarizes the mechanisms that the pathologies have in common, for instance, bladder dysfunction and inflammation. Conversely, some mechanisms have been described as present in only one pathology, such as neural regulation. Based on these specificities, we propose identifying a mechanism that could be common to all the above-mentioned pathologies.

7.
Regen Biomater ; 9: rbac022, 2022.
Article En | MEDLINE | ID: mdl-35784096

Embedding mesenchymal stromal cells (MSCs) in biomaterial is a subject of increasing interest in the field of Regenerative Medicine. Speeding up the clinical use of MSCs is dependent on the use of non-syngeneic models in accordance with Good Manufacturing Practices (GMP) requirements and on costs. To this end, in this study, we analyzed the in vivo host immune response following local injection of silanized hydroxypropyl methylcellulose (Si-HPMC)-embedded human MSCs in a rat model developing colorectal damage induced by ionizing radiation. Plasma and lymphocytes from mesenteric lymph nodes were harvested in addition to colonic tissue. We set up tests, using flow cytometry and a live imaging system, to highlight the response to specific antibodies and measure the cytotoxicity of lymphocytes against injected MSCs. We demonstrated that Si-HPMC protects MSCs from specific antibodies production and from apoptosis by lymphocytes. We also observed that Si-HPMC does not modify innate immune response infiltrate in vivo, and that in vitro co-culture of Si-HPMC-embedded MSCs impacts macrophage inflammatory response depending on the microenvironment but, more importantly, increases the macrophage regenerative response through Wnt-family and VEGF gene expression. This study furthers our understanding of the mechanisms involved, with a view to improving the therapeutic benefits of biomaterial-assisted cell therapy by modulating the host immune response. The decrease in specific immune response against injected MSCs protected by Si-HPMC also opens up new possibilities for allogeneic clinical use.

8.
J Immunother Cancer ; 10(3)2022 03.
Article En | MEDLINE | ID: mdl-35301235

BACKGROUND: Transforming growth factor-beta (TGFß) can limit the efficacy of cancer treatments, including radiotherapy (RT), by inducing an immunosuppressive tumor environment. The association of TGFß with impaired T cell infiltration and antitumor immunity is known, but the mechanisms by which TGFß participates in immune cell exclusion and limits the efficacy of antitumor therapies warrant further investigations. METHODS: We used the clinically relevant TGFß receptor 2 (TGFßR2)-neutralizing antibody MT1 and the small molecule TGFßR1 inhibitor LY3200882 and evaluated their efficacy in combination with RT against murine orthotopic models of head and neck and lung cancer. RESULTS: We demonstrated that TGFß pathway inhibition strongly increased the efficacy of RT. TGFßR2 antibody upregulated interferon beta expression in tumor-associated macrophages within the irradiated tumors and favored T cell infiltration at the periphery and within the core of the tumor lesions. We highlighted that both the antitumor efficacy and the increased lymphocyte infiltration observed with the combination of MT1 and RT were dependent on type I interferon signaling. CONCLUSIONS: These data shed new light on the role of TGFß in limiting the efficacy of RT, identifying a novel mechanism involving the inhibition of macrophage-derived type I interferon production, and fostering the use of TGFßR inhibition in combination with RT in therapeutic strategies for the management of head and neck and lung cancer.


Receptors, Transforming Growth Factor beta , Tumor-Associated Macrophages , Animals , Cell Line, Tumor , Humans , Interferon-beta/pharmacology , Mice , Transforming Growth Factor beta
9.
iScience ; 25(1): 103685, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35106469

The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers-i.e. miRNome, targeted transcriptome, proteome, and metabolome-in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation.

10.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article En | MEDLINE | ID: mdl-35163758

Chronic radiation cystitis (CRC) is a consequence of pelvic radiotherapy and affects 5-10% of patients. The pathology of CRC is without curative treatment and is characterized by incontinence, pelvic pain and hematuria, which severely degrades patients' quality of life. Current management strategies rely primarily on symptomatic measures and have certain limitations. Thanks to a better understanding of the pathophysiology of radiation cystitis, studies targeting key manifestations such as inflammation, neovascularization and cell atrophy have emerged and are promising avenues for future treatment. However, the mechanisms of CRC are still better described in animal models than in human models. Preclinical studies conducted to elucidate the pathophysiology of CRC use distinct models and are most often limited to specific processes, such as fibrosis, vascular damage and inflammation. This review presents a synthesis of experimental studies aimed at improving our understanding of the molecular mechanisms at play and identifying key processes in CRC.


Cystitis/etiology , Radiation Injuries/metabolism , Animals , Cystitis/metabolism , Cystitis/pathology , Disease Models, Animal , Fibrosis , Gene Regulatory Networks , Humans , Quality of Life , Radiation Injuries/complications , Radiation Injuries/pathology
11.
Int J Radiat Oncol Biol Phys ; 112(4): 975-985, 2022 03 15.
Article En | MEDLINE | ID: mdl-34808254

PURPOSE: Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice. However, the effect of radiation on EC senescence remains unclear because it depends on dose and fractionation, and because the senescent phenotype is heterogeneous and dynamic. METHODS AND MATERIALS: Using a systems biology approach in vitro, we deciphered the dynamic senescence-associated transcriptional program induced by irradiation. RESULTS: Flow cytometry and single-cell RNA sequencing experiments revealed the heterogeneous senescent status of irradiated ECs and allowed to deciphered the molecular program involved in this status. We identified the Interleukin-1 signaling pathway as a key player in the radiation-induced premature senescence of ECs, as well as the endothelial-to-mesenchymal transition process, which shares strong hallmarks of senescence. CONCLUSIONS: Our work provides crucial information on the dynamics of the radiation-induced premature senescence process, the effect of the radiation dose, as well as the molecular program involved in the heterogeneous senescent status of ECs.


Cellular Senescence , Endothelial Cells , Animals , Endothelial Cells/pathology , Mice , Phenotype , Signal Transduction
12.
Sci Rep ; 11(1): 22241, 2021 11 15.
Article En | MEDLINE | ID: mdl-34782666

Osteoradionecrosis (ORN) is one of the most feared side effects of radiotherapy following cancers of the upper aero-digestive tract and leading to severe functional defects in patients. Today, our lack of knowledge about the physiopathology restricts the development of new treatments. In this study, we refined the ORN rat model and quantitatively studied the progression of the disease. We tested the impact of radiation doses from 20 to 40 Gy, delivered with incident 4MV X-ray beams on the left mandible of the inbred Lewis Rat. We used micro-computed tomography (µCT) to obtain in vivo images for longitudinal bone imaging and ex vivo images after animal perfusion with barium sulphate contrast agent for vessel imaging. We compared quantification methods by analyzing 3D images and 2D measurements to determine the most appropriate and precise method according to the degree of damage. We defined 25 Gy as the minimum irradiation dose combined with the median molar extraction necessary to develop non-regenerative bone necrosis. µCT image analyses were correlated with clinical and histological analyses. This refined model and accurate methods for bone and vessel quantification will improve our knowledge of the progression of ORN pathology and allow us to test the efficacy of new regenerative medicine procedures.


Mandible/diagnostic imaging , Mandible/pathology , Osteoradionecrosis/diagnostic imaging , Osteoradionecrosis/pathology , X-Ray Microtomography , Animals , Biopsy , Disease Models, Animal , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Immunohistochemistry , Mandible/radiation effects , Osteoradionecrosis/etiology , Radiation Dosage , Radiation Injuries, Experimental , Radiographic Image Enhancement , Rats , X-Ray Microtomography/methods
13.
EMBO Mol Med ; 13(11): e14146, 2021 11 08.
Article En | MEDLINE | ID: mdl-34725920

The mechanisms underlying the development of glomerular lesions during aging are largely unknown. It has been suggested that senescence might play a role, but the pathophysiological link between senescence and lesion development remains unexplained. Here, we uncovered an unexpected role for glomerular endothelial cells during aging. In fact, we discovered a detrimental cross-talk between senescent endothelial cells and podocytes, through PAI-1. In vivo, selective inactivation of PAI-1 in endothelial cells protected glomeruli from lesion development and podocyte loss in aged mice. In vitro, blocking PAI-1 in supernatants from senescent endothelial cells prevented podocyte apoptosis. Consistently, depletion of senescent cells prevented podocyte loss in old p16 INK-ATTAC transgenic mice. Importantly, these experimental findings are relevant to humans. We showed that glomerular PAI-1 expression was predictive of poor outcomes in transplanted kidneys from elderly donors. In addition, we observed that in elderly patients, urinary PAI-1 was associated with age-related chronic kidney disease. Altogether, these results uncover a novel mechanism of kidney disease and identify PAI-1 as a promising biomarker of kidney dysfunction in allografts from elderly donors.


Kidney Diseases , Podocytes , Aged , Animals , Cellular Senescence , Endothelial Cells , Humans , Kidney Glomerulus , Mice , Plasminogen Activator Inhibitor 1
14.
Stem Cell Res Ther ; 12(1): 309, 2021 05 29.
Article En | MEDLINE | ID: mdl-34051871

BACKGROUND: The intestine is particularly sensitive to moderate-high radiation dose and the development of gastrointestinal syndrome (GIS) leads to the rapid loss of intestinal mucosal integrity, resulting in bacterial infiltration, sepsis that comprise patient survival. There is an urgent need for effective and rapid therapeutic countermeasures. The stromal vascular fraction (SVF) derived from adipose tissue is an easily accessible source of cells with angiogenic, anti-inflammatory and regenerative properties. We studied the therapeutic impact of SVF and its action on the intestinal stem cell compartment. METHODS: Mice exposed to the abdominal radiation (18 Gy) received a single intravenous injection of stromal vascular fraction (SVF) (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Mortality was evaluated as well as intestinal regeneration by histological analyses and absorption function. RESULTS: The SVF treatment limited the weight loss of the mice and inhibited the intestinal permeability and mortality after abdominal irradiation. Histological analyses showed that SVF treatment stimulated the regeneration of the epithelium by promoting numerous enlarged hyperproliferative zones. SVF restored CD24+/lysozyme- and Paneth cell populations in the ISC compartment with the presence of Paneth Ki67+ cells. SVF has an anti-inflammatory effect by repressing pro-inflammatory cytokines, increasing M2 macrophages in the ileum and anti-inflammatory monocyte subtypes CD11b+Ly6clowCX3CR1high in the spleen. CONCLUSIONS: Through the pleiotropic effects that contribute to limiting radiation-induced lethality, SVF opens up attractive prospects for the treatment of emergency GIS.


Radiation Injuries , Stromal Cells , Adipose Tissue , Animals , Humans , Macrophages , Mice , Stem Cells
15.
J Vis Exp ; (168)2021 02 20.
Article En | MEDLINE | ID: mdl-33682854

The importance of dosimetry protocols and standards for radiobiological studies is self-evident. Several protocols have been proposed for dose determination using low energy X-ray facilities, but depending on the irradiation configurations, samples, materials or beam quality, it is sometimes difficult to know which protocol is the most appropriate to employ. We, therefore, propose a dosimetry protocol for cell irradiations using low energy X-ray facility. The aim of this method is to perform the dose estimation at the level of the cell monolayer to make it as close as possible to real cell irradiation conditions. The different steps of the protocol are as follows: determination of the irradiation parameters (high voltage, intensity, cell container etc.), determination of the beam quality index (high voltage-half value layer couple), dose rate measurement with ionization chamber calibrated in air kerma conditions, quantification of the attenuation and scattering of the cell culture medium with EBT3 radiochromic films, and determination of the dose rate at the cellular level. This methodology must be performed for each new cell irradiation configuration as the modification of only one parameter can strongly impact the real dose deposition at the level of the cell monolayer, particularly involving low energy X-rays.


Cells/radiation effects , Radiometry , Calibration , Computer Simulation , Culture Media , Dose-Response Relationship, Radiation , X-Rays
16.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article En | MEDLINE | ID: mdl-33670243

Fibrosis is a leading cause of death in occidental states. The increasing number of patients with fibrosis requires innovative approaches. Despite the proven beneficial effects of mesenchymal stem cell (MSC) therapy on fibrosis, there is little evidence of their anti-fibrotic effects in colorectal fibrosis. The ability of MSCs to reduce radiation-induced colorectal fibrosis has been studied in vivo in Sprague-Dawley rats. After local radiation exposure, rats were injected with MSCs before an initiation of fibrosis. MSCs mediated a downregulation of fibrogenesis by a control of extra cellular matrix (ECM) turnover. For a better understanding of the mechanisms, we used an in vitro model of irradiated cocultured colorectal fibrosis in the presence of human MSCs. Pro-fibrotic cells in the colon are mainly intestinal fibroblasts and smooth muscle cells. Intestinal fibroblasts and smooth muscle cells were irradiated and cocultured in the presence of unirradiated MSCs. MSCs mediated a decrease in profibrotic gene expression and proteins secretion. Silencing hepatocyte growth factor (HGF) and tumor necrosis factor-stimulated gene 6 (TSG-6) in MSCs confirmed the complementary effects of these two genes. HGF and TSG-6 limited the progression of fibrosis by reducing activation of the smooth muscle cells and myofibroblast. To settle in vivo the contribution of HGF and TSG-6 in MSC-antifibrotic effects, rats were treated with MSCs silenced for HGF or TSG-6. HGF and TSG-6 silencing in transplanted MSCs resulted in a significant increase in ECM deposition in colon. These results emphasize the potential of MSCs to influence the pathophysiology of fibrosis-related diseases, which represent a challenging area for innovative treatments.


Cell Adhesion Molecules/metabolism , Colonic Diseases/metabolism , Hepatocyte Growth Factor/metabolism , Mesenchymal Stem Cells/metabolism , Radiation Injuries, Experimental/metabolism , Animals , Colonic Diseases/pathology , Colonic Diseases/therapy , Fibrosis , Humans , Mesenchymal Stem Cells/pathology , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/therapy , Rats , Rats, Sprague-Dawley , Rats, Transgenic
17.
Front Med (Lausanne) ; 8: 794324, 2021.
Article En | MEDLINE | ID: mdl-35004768

Lung stereotactic body radiation therapy is characterized by a reduction in target volumes and the use of severely hypofractionated schedules. Preclinical modeling became possible thanks to rodent-dedicated irradiation devices allowing accurate beam collimation and focal lung exposure. Given that a great majority of publications use single dose exposures, the question we asked in this study was as follows: in incremented preclinical models, is it worth using fractionated protocols or should we continue focusing solely on volume limitation? The left lungs of C57BL/6JRj mice were exposed to ionizing radiation using arc therapy and 3 × 3 mm beam collimation. Three-fraction schedules delivered over a period of 1 week were used with 20, 28, 40, and 50 Gy doses per fraction. Lung tissue opacification, global histological damage and the numbers of type II pneumocytes and club cells were assessed 6 months post-exposure, together with the gene expression of several lung cells and inflammation markers. Only the administration of 3 × 40 Gy or 3 × 50 Gy generated focal lung fibrosis after 6 months, with tissue opacification visible by cone beam computed tomography, tissue scarring and consolidation, decreased club cell numbers and a reactive increase in the number of type II pneumocytes. A fractionation schedule using an arc-therapy-delivered three fractions/1 week regimen with 3 × 3 mm beam requires 40 Gy per fraction for lung fibrosis to develop within 6 months, a reasonable time lapse given the mouse lifespan. A comparison with previously published laboratory data suggests that, in this focal lung irradiation configuration, administering a Biological Effective Dose ≥ 1000 Gy should be recommended to obtain lung fibrosis within 6 months. The need for such a high dose per fraction challenges the appropriateness of using preclinical highly focused fractionation schedules in mice.

18.
Cell Transplant ; 29: 963689720929683, 2020.
Article En | MEDLINE | ID: mdl-33108903

Radiation therapy is crucial in the therapeutic arsenal to cure cancers; however, non-neoplastic tissues around an abdominopelvic tumor can be damaged by ionizing radiation. In particular, the radio-induced death of highly proliferative stem/progenitor cells of the colonic mucosa could induce severe ulcers. The importance of sequelae for patients with gastrointestinal complications after radiotherapy and the absence of satisfactory management has opened the field to the testing of innovative treatments. The aim of this study was to use adult epithelial cells from the colon, to reduce colonic injuries in an animal model reproducing radiation damage observed in patients. We demonstrated that transplanted in vitro-amplified epithelial cells from colonic organoids (ECO) of C57/Bl6 mice expressing green fluorescent protein implant, proliferate, and differentiate in irradiated mucosa and reduce ulcer size. To improve the therapeutic benefit of ECO-based treatment with clinical translatability, we performed co-injection of ECO with mesenchymal stromal cells (MSCs), cells involved in niche function and widely used in clinical trials. We observed in vivo an improvement of the therapeutic benefit and in vitro analysis highlighted that co-culture of MSCs with ECO increases the number, proliferation, and size of colonic organoids. We also demonstrated, using gene expression analysis and siRNA inhibition, the involvement of bone morphogenetic protein antagonists in MSC-induced organoid formation. This study provides evidence of the potential of ECO to limit late radiation effects on the colon and opens perspectives on combined strategies to improve their amplification abilities and therapeutic effects.


Bone Morphogenetic Proteins/antagonists & inhibitors , Colon/growth & development , Mesenchymal Stem Cells/metabolism , Organoids/growth & development , Radiation Injuries/therapy , Animals , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Colon/radiation effects , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Green Fluorescent Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Mucous Membrane/pathology , Mucous Membrane/radiation effects , Radiation, Ionizing , Time Factors
19.
Gut Microbes ; 12(1): 1-15, 2020 11 09.
Article En | MEDLINE | ID: mdl-32985332

Every year, millions of people around the world benefit from radiation therapy to treat cancers localized in the pelvic area. Damage to healthy tissue in the radiation field can cause undesirable toxic effects leading to gastrointestinal complications called pelvic radiation disease. A change in the composition and/or function of the microbiota could contribute to radiation-induced gastrointestinal toxicity. In this study, we tested the prophylactic effect of a new generation of probiotic like Faecalibacterium prausnitzii (F. prausnitzii) on acute radiation-induced colonic lesions. Experiments were carried out in a preclinical model of pelvic radiation disease. Rats were locally irradiated at 29 Gray in the colon resulting in colonic epithelial barrier rupture. Three days before the irradiation and up to 3 d after the irradiation, the F. prausnitzii A2-165 strain was administered daily (intragastrically) to test its putative protective effects. Results showed that prophylactic F. prausnitzii treatment limits radiation-induced para-cellular hyperpermeability, as well as the infiltration of neutrophils (MPO+ cells) in the colonic mucosa. Moreover, F. prausnitzii treatment reduced the severity of the morphological change of crypts, but also preserved the pool of Sox-9+ stem/progenitor cells, the proliferating epithelial PCNA+ crypt cells and the Dclk1+/IL-25+ differentiated epithelial tuft cells. The benefit of F. prausnitzii was associated with increased production of IL-18 by colonic crypt epithelial cells. Thus, F. prausnitzii treatment protected the epithelial colonic barrier from colorectal irradiation. New-generation probiotics may be promising prophylactic treatments to reduce acute side effects in patients treated with radiation therapy and may improve their quality of life.


Colon/radiation effects , Faecalibacterium prausnitzii , Intestinal Mucosa/radiation effects , Probiotics , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/prevention & control , Animals , Cell Proliferation , Colon/immunology , Colon/pathology , Colon/physiopathology , Gastrointestinal Microbiome , Interleukin-18/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/physiology , Macrophages/physiology , Male , Neutrophils/physiology , Pelvis , Permeability , Radiation Injuries, Experimental/immunology , Rats , Rats, Sprague-Dawley , Rectum/radiation effects , Stem Cells/physiology
20.
Int J Radiat Oncol Biol Phys ; 107(3): 548-562, 2020 07 01.
Article En | MEDLINE | ID: mdl-32278852

PURPOSE: Stereotactic body radiation therapy is a therapeutic option offered to high surgical risk patients with lung cancer. Focal lung irradiation in mice is a new preclinical model to help understand the development of lung damage in this context. Here we developed a mouse model of lung stereotactic therapy using arc delivery and monitored the development of lung damage while varying the beam size and dose delivered. METHODS AND MATERIALS: C57BL/6JRj mice were exposed to 90 Gy focal irradiation on the left lung using 1-mm diameter, 3 × 3 mm2, 7 × 7 mm2, or 10 × 10 mm2 beam collimation for beam size effect and using 3 × 3 mm2 beam collimation delivering 20 to 120 Gy for dose effect. Long-term lung damage was monitored with micro-computed tomography imaging with anatomopathologic and gene expression measurements in the injured patch and the ipsilateral and contralateral lungs. RESULTS: Both 1-mm diameter and 3 × 3 mm2 beam collimation allow long-term studies, but only 3-mm beam collimation generates lung fibrosis when delivering 90 Gy. Dose-effect studies with constant 3-mm beam collimation revealed a dose of 60 Gy as the minimum to obtain lung fibrosis 6 months postexposure. Lung fibrosis development was associated with club cell depletion and increased type II pneumocyte numbers. Lung injury developed with ipsilateral and contralateral consequences such as parenchymal thickening and gene expression modifications. CONCLUSIONS: Arc therapy allows long-term studies and dose escalation without lethality. In our dose-delivery conditions, dose-effect studies revealed that 3 × 3 mm2 beam collimation to a minimum single dose of 60 Gy enables preclinical models for the assessment of lung injury within a 6-month period. This model of lung tissue fibrosis in a time length compatible with mouse life span may offer good prospects for future mechanistic studies.


Lung/radiation effects , Radiosurgery/adverse effects , Animals , Bronchiolitis/etiology , Cell Count , Disease Models, Animal , Dose-Response Relationship, Radiation , Epithelial Cells/pathology , Epithelial Cells/radiation effects , Fibrosis , Lung/pathology , Male , Mice , Survival Analysis
...